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ABSTRACT

Controlling weed infestation is pivotal to achieving the maximum yield in paddy fields. At 
a time of exponential human population growth and depleting arable land mass, finding the 
solution to this problem is crucial. For a long time, herbicides have been the most favoured 
approach for weed control due to their efficacy and ease of application. However, adverse 
effects on the environment due to the excessive use of herbicides have prompted more 
cautious and effective herbicide usage. Many weed species tend to dominate the field, 
and the weed thrived in patches, rendering conventional broad herbicide spraying futile. 

Site-specific weed management (SSWM) 
consists of two strategies: weed mapping 
and selective herbicide application. Since 
its introduction into the agriculture sector, 
unmanned aerial vehicles (UAV) have 
become the platform of choice for carrying 
both the remote sensing system for weed 
mapping and the selective application 
of herbicide. Red-Green-Blue (RGB), 
multispectral and hyperspectral sensors on 
UAVs enable highly accurate weed mapping. 
In Malaysia, adopting this technology is 
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highly possible, given the nature of government-administrated rice cultivation. This review 
provides insight into the weed management practice using remote sensing techniques on 
UAV platforms with potential applications in Malaysia's paddy field. It also discusses the 
recent works on weed mapping with imaging remote sensing on a UAV platform.

Keywords: Hyperspectral remote sensing, paddy field, unmanned aerial vehicle (UAV), weed management 

INTRODUCTION

As the global population is fast approaching the 8 billion mark, ensuring sufficient food 
supply has become a top priority for the world economies. Rice (Oryza sativa L), which 
feeds half of the world's population daily, accounts for 20% of the annual cereal grain 
production (Cai et al., 2022). In Asian countries, the role of rice as the staple food is 
more monumental as it supplies an astounding 70% of the daily calorie need (Rahman & 
Zhang, 2022). According to the latest data, global rice production stood at 508.7 million 
tons (Nawaz et al., 2022).

Rice cultivation is one of the main agriculture sectors in Malaysia, apart from rubber 
and oil palm plantations (Sulaiman et al., 2022). Approximately one million people are 
directly employed under the rice cultivation ecosystem. In terms of daily consumption, 
Malaysia's average rice consumption per capita in 2016 stood at 80 kilograms per person 
(Abidin et al., 2022). It is equivalent to 2.7 million tons of rice requirement per year. 
However, as of 2020, the local rice production was insufficient to fulfil the demand, with 
a total production of only 1.51 million tons. This situation has caused Malaysia to depend 
on rice imports from Thailand, Vietnam, and Pakistan to compensate for the deficit.

Numerous efforts have been undertaken to increase the production of rice. However, 
the infestation of weeds has proven to be the main biological hindrance in achieving the full 
rice yield potential, reducing cultivation profitability. Weeds compete for nutrients, light, 
space and moisture (Hasan, Ahmad-Hamdani et al., 2021). The extent of damage caused 
by weeds in rice cultivation depends on several factors. Among the most prominent are the 
weed species, their density in the planting area, and the competition duration. Meanwhile, 
the weed type and its persistence are determined by the type of crop, climate and season, 
date of sowing, and the cultivating methodology.

The loss of rice production in Malaysia is mainly due to the weedy rice (Oryza sativa 
f. spontanea Roshev) species infestation (Motmainna et al., 2021a; Mispan et al., 2019). 
Similar to other developing countries that produce rice, the shift from planting techniques 
to direct seeding methods in the last 35 years has amplified the weedy rice infestation. 
Though it is estimated that the rice loss in Malaysia is between 10–15%, the final extent 
of the loss can be much higher depending on the infestation level. At a high infestation 
level, defined by the presence of 21–30 weedy rice panicles per square meter, the loss can 
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amount to 30% (Dilipkumar et al., 2021). In contrast, half of the cultivation can be lost 
once the infestation reaches a heavy level (≥31 panicles).

The control measures for weeds range from cultural, physical, biological and 
mechanical methods. However, chemical control involving the use of the herbicide has 
been preferred since it is the most effective and easiest to perform (Motmainna et al., 2021b; 
Hasan, Mokhtar et al., 2021). Herbicide is distinguished into different categories based on 
several criteria: its chemical family and formulation, mechanism of action, selectivity, site 
of uptake by the targeted weed, and based on its application times, whether it is pre-plant, 
pre-emergence or post-emergence (Monteiro & Santos, 2022). Unfortunately, excessive 
usage of herbicides causes harmful and detrimental environmental effects. Therefore, there 
is a need for a more sustainable weed management strategy.

Site-specific weed management (SSWM) is a method that enables accurate and site-
specific application of herbicides on weeds of interest (Huang et al., 2020). It involves the 
process of weed mapping using specific remote sensing tools integrated into a suitable 
platform before the herbicide spraying process. Imaging remote sensors, namely Red-
Green-Blue (RGB), multispectral, and hyperspectral, are the three different image sensors 
used widely in the agriculture industry (Roslim et al., 2021). Data gathered by the sensors 
is processed and interpreted by a suitable machine learning (ML) approach to produce a 
workable and precise weed mapping used for the site-specific herbicide application (Guo 
et al., 2022). Meanwhile, Unmanned Aerial Vehicles (UAVs) have gained attention among 
the available platforms for their brevity and precision (Monteiro & Santos, 2022). Through 
SSWM via remote sensing, the need for herbicide application can be determined based 
on the economic weed threshold, at which yield gain outweighed the overall cost of the 
chemical and its spraying operation. Numerous studies on cereals, maize, sugar, beat and 
peas have reported a 23–89% saving on herbicides (Gerhards et al., 2022). This paper 
reviews the weed problem involving rice plantations, with particular attention to weedy 
rice, and the solution via SSWM using remote sensing technology and the UAV platform 
for application in Malaysian rice fields. 

RICE CULTIVATION IN MALAYSIA AND THE WEED PREDICAMENT

Rice is a seasonal crop with two cultivation cycles, with the first one beginning in April 
till September, followed by October and ending in March. A complete rice growth cycle 
lasts for 120-125 days. The cycle consists of three growth stages: (1) vegetative (1–41 
days after planting), (2) reproductive (42–77 days), and (3) maturative (83–99 days). To 
boost rice production, Malaysia's government introduced a rice granary, arable land, with 
a centralised canal irrigation system that the federal government administrates (Ruzmi et 
al., 2021). To date, 12 rice granaries have been developed that cover a total area of 425,613 
hectares. Most of the rice cultivation undertaken in Malaysia takes place in these granaries.
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The manual rice transplanting method was used at the beginning of large-scale 
cultivation. Unfortunately, the shrinking workforce in the agriculture sector has made 
the transplanting method less practical (Alam et al., 2020). It is reported that the labour 
workforce has experienced a prolonged decline since the 1980s and eventually shrunk by 
0.1% between 2010–2019 due to several factors, such as rapid urbanisation and an ageing 
farming population. The direct-seeded rice (DSR) technique was adopted to overcome 
this, in which the seed is sown directly into the soil (Shekhawat et al., 2020). Apart from 
requiring fewer workforces, it has become a method of choice since it is more rapid, has 
a low water requirement, and requires minimal mechanisation. It has also been reported 
that DSR experienced a 7–10 days early maturity (Nagargade et al., 2018). DSR has been 
adopted in Malaysia since the late 1980s (Ruzmi et al., 2021). In Asia, DSR is practised 
in 21% or 29 million hectares of the total cultivated area (Alam et al., 2020). Meanwhile, 
in Malaysia, due to the intensive adoption of mechanisation for rice cultivation, 90% of 
the total area is planted using DSR (Sulaiman et al., 2022).

In tropical Asian rice fields, yield loss caused by weeds is more significant than that 
caused by pathogens and insects. Rice is a naturally weak competitor and, under duress, will 
experience uneven flowering and non-uniform maturity. The severity of yield loss depends 
on the duration of competition with weed. Throughout the entire growth cycle, the first 41 
days after sowing are the most critical, though keeping the cultivation free from weed for 
up to 70 days has been shown to guarantee a high yield (Shekhawat et al., 2020). If proper 
weed management is not practised during this critical period, yield loss could range from 
15% to a complete loss (Busi et al., 2017). Major weed flora in DSR for the Asia region 
consists of 3 broad groups: grassy, sedges, and broadleaf (Table 1).

Table 1
Major weed species in Asia’s rice field (Nagargade et al., 2018)

Grassy weeds Sedges Broadleaf weeds
Digitaria setigera Roth Cyperus iria L. Commelina benghalensis L.

Digitaria sanguinalis (L.) 
Scop.

Cyperus difformis L. Caesulia axillaris Roxb.

Digitaria ciliaris (Retz.) 
Koeler

Cyperus rotundus L. Eclipta prostrata (L.) L.

Echinochloa colona (L.) Link Fimbristylis miliacea (L.) Vahl Ipomoea aquatica Forssk.
Echinochloa crus-galli (L.) 

P. Beauv.
Ludwigia octovalvis (Jacq.)

P. H. Raven
Eleusine indica (L.) Gaertn. Ludwigia adscendens (L.)

H. Hara
Ischaemum rugosum Salisb. Monochoria vaginalis 

(Burm.f.) C. Presl
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Despite its numerous advantages in advancing the rice cultivation sector, DSR has 
given rise to severe weed infestation worldwide. Due to prolonged and continuous DSR 
implementation, the original weed flora in Southeast Asia rice fields has shifted towards 
the more aggressive grassy and sedge weed species. The most notable species that has 
caused the most damage is the weedy rice, which belongs to the same genus and species as 
cultivated rice (Motmainna et al., 2021a). Severe weedy rice infestations have been reported 
in China, India, Bangladesh, Bhutan, Nepal, Sri Lanka, the Philippines, Vietnam, Thailand, 
Malaysia, and the USA. In Malaysia, weedy rice is known by its local name, padi angin, 
translated as wind rice, for its grains are often shattered by wind gusts (Motmainna et al., 
2021c). The first case of weedy rice infestation was reported in 1988 in the Northwest 
Selangor Project rice field in Sekinchan (Mispan et al., 2019). It then spread to the rest of 
the rice granaries. In some of the granaries, an infestation rate of more than 50% of the 
total cultivated land has been reported. Weedy rice possessed numerous characteristics 
that made it possible for it to survive and thrive in the rice area. Morphologically, weedy 
rice is taller than cultivated rice, making it more efficient in capturing sunlight. It also has 
higher tillering when competing for space. The photosynthetic rate and the nitrogen uptake 
efficiency of weedy rice are also superior, depriving the cultivated rice of enough nutrients 
for growth. Higher stress tolerance is also associated with the weed plant (Motmainna et 
al., 2021d). The weedy rice seed has a faster germination rate and can stay dormant in the 
soil bed for a consecutively long period of up to 10 years.

Weed control is pivotal to ensure maximum yield and avoid crop destruction. Manual 
weed control, though effective, is not preferred on the commercial scale since it depends 
on a large labour workforce. Chemical control via herbicide is the most applied method in 
rice cultivation. Herbicide is a chemical substance formulated to pass through the plant’s 
membrane surface and exerts toxic and lethal effects inside the cell (Hasan et al., 2022). 
Generally, there are two types of herbicides: (1) pre-emergence and (2) post-emergence with 
varying chemical active ingredients (Table 2). Pre-emergence is sprayed within three days 
following the seed sowing. As for the post-emergence herbicide, an early application takes 
place 10–12 days after sowing, while a late application is made 25–30 days after sowing.

Table 1 (Continue)

Grassy weeds Sedges Broadleaf weeds
Leptochloa chinensis (L.) 

Nees
Sphenoclea zeylanica Gaertn.

O. sativa
Paspalum conjugatum

P. J.Bergius
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Table 2
Commonly used herbicide in paddy fields based on the active ingredients (Hafeez-ur-Rehman et al., 2019; 
Shekhawat et al., 2020)

Pre-emergence Trade name Post-emergence Trade name
Nitrofen Tok E-25 Bispyribac sodium Adora 10 SC

Butachlor Machete Pyrazosulfuron Ojika
Pendimethalin Stomp Ethoxysulfuron Sunrice
Thiobencarb Bolero Penoxsulam Granite
Oxyflorfen Goal Glyphosate Roundup
Oxadiazon Ronstar 2,4-D Weedar 64
Oxadiargyl Topstar Fenoxaprop Acclaim Extra
Pretilachlor Sofit Azimsulfuron Gulliver
Acetochlor Harness Propanil Stamp F-34

Unfortunately, applying herbicides in agriculture is associated with various detrimental 
effects. It causes contamination to the soil surface, which, as a result, reduces soil microbial 
communities and earthworm populations. Consequently, the naturally occurring soil nutrient 
enrichment process is affected, and the overall soil biodiversity is altered. Herbicides can 
seep deep into the ground and contaminate the groundwater reservoir (Monteiro & Santos, 
2022). The residue of the chemicals can also be traced in the food supply. Meanwhile, 
continuous application of similar herbicides on the same field site triggers weed flora 
shift and develops herbicide-resistance weeds (Motmainna et al., 2021e). The on-field 
growth pattern of the weed creates another challenge for an efficient application of the 
herbicide. Weed grows heterogeneously and is spread throughout the entire field in patches. 
Without proper weed control, the weed aggregates in the designated patches over time and 
eventually becomes dominant over the cultivated species. Furthermore, flat spraying, in 
which herbicide is sprayed indiscriminately on the entire field, contributes to the thriving 
of a specific weed flora on specific patches. Therefore, a more prudent way is required to 
achieve satisfactory control over the weed infestation via herbicide application.

SITE-SPECIFIC WEED MANAGEMENT WITH REMOTE SENSING AND UAV

A better chemical weed control strategy through herbicide application involves two 
strategies. The first is identifying and selecting the zones or patches inside the rice field 
that require herbicide spraying. Secondly, the herbicide is applied exclusively on the 
determined site. These strategies of weed identification and selective herbicide application 
are known as site-specific weed management (SSWM) (Eddy et al., 2014). Meanwhile, 
the economic weed threshold is the decision-making process that determines the necessary 
herbicide spraying. Herbicide is sprayed only when the expected yield increase following 
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the herbicide treatment exceeds the overall cost of the herbicide application. SSWM 
eliminates unnecessary herbicide usage, lowers production costs, and reduces contamination 
related to herbicides being released into the environment (Eddy et al., 2014). Remote 
sensing imaging technologies used in agriculture are the Red-Green-Blue (RGB) sensor, 
multispectral and hyperspectral.

Meanwhile, UAVs are becoming the preferred platform for carrying imaging sensors. 
It offers flexibility in its flying program due to its swift and fast deployment, which 
shortens the planning-to-flight time (Roslim et al., 2021). However, there are limitations 
related to UAVs in terms of their limited flight time and data processing speed (Huang, 
Reddy et al., 2018). Three operators are required to accomplish the surveying operation. 
First is a radio control pilot responsible for manually launching and landing the UAV and 
activating the flight path. The second ground station operator controls the UAV position, 
flying altitude, flight speed, wind speed, radio control signal quality and battery level. 
Finally, a third operator is a visual observer to assess possible collision and obstruction. 
When coupled with UAV, the surveying and documentation process consists of three 
phases: (1) pre-flight planning, (2) in-flight image acquisition, and (3) dataset extrapolation. 
Besides the surveying task, UAVs have also been utilised for selective herbicide spraying. 
A specified herbicide is applied directly to the weed patch, and excessive chemical usage 
can be avoided using data feed based on the weed mapping. The overall SSWM process 
is depicted in Figure 1.

Site Specific Weed Management

UAV

RGB Multispectral        Hyperspectral

Weed mapping

Decision making process

Site-specific herbicide 
application

Economic weed threshold

Figure 1. The overall process of site-specific weed management using herbicide via UAV and remote sensing
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SSWM with remote sensing and UAV may solve the problem of weed infestation. 
However, the adoption rate of the technology for on-field applications is relatively slow. 
Economic feasibility, particularly the return on investment, is a critical factor that worsens 
the situation. There are costs associated with hardware and software procurement and data 
acquisition. In addition, a large land area of more than 500 hectares is required to make the 
technology economically feasible (Hunt & Daughtry, 2018). Other factors contributing to 
the low adoption rate are the farmer’s age, educational background, and ownership status 
of the land.

AVAILABLE SENSORS FOR REMOTE SENSING

RGB Sensor

RGB is the most basic imaging remote sensing technology currently in use. A normal 
consumer camera with a red-green-blue visual spectrum can be readily utilised (Roslim et 
al., 2021). This type of sensor can measure vegetation indices (VI) such as the Greenness 
Index (GI), Excessive Greenness (EG), and Green/Red Vegetation Index (GRVI). RGB 
has the lowest cost and a shallow learning curve, making it easy for a novice to familiarise 
themselves and apprehend the process. Unlike the multispectral and hyperspectral sensors, 
RGB does not require radiometric calibration (Esposito et al., 2021). However, it is 
susceptible to low lighting conditions. Moreover, the ability of RGB to distinguish the 
weed from the cultivated plant depends on the degree of apparent and significant disparity 
between both plants (Zhang et al., 2019).

Before the flight, parameters such as the area coverage, flight altitude, topography, 
weather conditions and any related local regulations have to be determined (Esposito et 
al., 2021). During the flight, the operator needs to ensure that sufficient data is gathered 
to produce meaningful analysis. During the third phase, the individual images collected 
undergo rectification before being stitched together to generate a single image (orthomosaic) 
of the covered study area. The orthomosaic image can be represented by either the RGB 
values or the intended VI. In the broad agriculture application, the RGB sensor has been 
used to type the phenotypic features of plants such as the flower, fruit, branch, and trunk. 
In addition, information such as the leaf count, shape, colour, position and overall plant 
size has also been gathered via the RGB sensory process (Roslim et al., 2021). Meanwhile, 
the UAV-mounted RGB has been utilised for several purposes, such as producing the field 
map, identifying plants that experienced abiotic stress, and performing biomass estimation.

Multispectral Sensor

Multispectral sensor imagery ranges from 5–12 radiometric bands and can detect 
spectra in the visible spectrum and near-infrared region. Due to the additional bands, 



Weed Management Using UAV and Remote Sensing

PREPRINT

the range of VI that a multispectral sensor can monitor is expanded compared to an RGB 
sensor (Esposito et al., 2021). Multispectral sensor requires radiometric calibration and 
atmospheric correction. Unlike the RGB sensor, which captures images, the multispectral 
sensor records the radiance from the field and converts it to digital numbers (Tu et al., 
2018). The digital numbers are not exactly representative of the surface reflectance since 
the light illumination condition, and the consistency of the sensor influence the recorded 
numbers. Therefore, radiometric calibration is a prerequisite to obtaining consistent 
spectral information throughout the entire area of mapping. During the flight, the sensor 
will gather a high dataset volume. Input/output errors and missing data must be avoided 
to ensure sufficient and satisfactory data can be collected (Esposito et al., 2021). Finally, 
multiple images collected are rectified and georeferenced before they are stacked together 
to produce a single image with varying radiometric levels.

VI are algebraic combinations of several spectra at particular bands that indicate 
vegetation vigour and properties. Since the reflectance in the near-infrared region is more 
abundant than in the visible spectrum, many non-visible recognitions, such as early-stage 
plant disease and soil water content, can be harnessed (Esposito et al., 2021). Moreover, 
the accuracy of VI generated by the multispectral sensor is superior to the RGB sensor 
(Furukawa et al., 2021).

Hyperspectral Sensor

The hyperspectral sensor differs from the multispectral sensor in terms of the number of 
spectral bands and the bandwidth (Adão et al., 2017). The total number of spectral bands 
in hyperspectral imaging can extend to the thousands range with a bandwidth ranging from 
5–20 nm, respectively. The enormous dataset gathered from the almost continuous spectra of 
the hyperspectral sensor enables a more in-depth and specific field characteristic compared 
to the multispectral sensor (Esposito et al., 2021). Processes and steps involved during the 
three phases of flight operation are almost similar to the multispectral sensor; however, they 
are more complex due to the greater complexity of the hyperspectral technology. Through 
hyperspectral imagery, narrowband VI, such as modified vegetation stress ratio (MVSR), 
transformed chlorophyll absorption ratio index (TCARI), and modified soil-adjusted 
vegetation index (MSAVI), can be calculated (Adão et al., 2017).

MACHINE LEARNING FOR WEED IDENTIFICATION

The initial step of a successful SSWM with remote sensing is detecting and recognizing 
weeds. The sensors' massive data must be processed to produce a workable and accurate 
weed mapping. Machine learning (ML), a subset of artificial intelligence, uses the current 
high computing performance to interpret the big data generated (Benos et al., 2021). ML 
involves a computer learning process based on data input without strict programming 
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limitations (Liakos et al., 2018). The learning process occurs via various machine 
learning models and algorithms, and the performance of the ML process is validated using 
appropriate statistical measures. 

ML is widely applied in various precision agriculture practices, including weed 
management. A typical ML takes place in four steps: data input, data pre-processing, model 
building, and generalisation (Sharma et al., 2021), as shown in Figure 2. The performance 
of ML improved over time with a gain in new data and experience, making it possible for 
the model and algorithm to come up with better and correct predictions (Domingos, 2012). 

Figure 2. A general machine learning approach

RECENT PROGRESS ON WEED MAPPING VIA IMAGING REMOTE 
SENSING
The first part of a successful SSWM strategy is identifying and locating the weed infestation 
site and determining the necessity of selective herbicide application. Countless research on 
SSWM via remote sensing has been reported using multiple platforms. However, there is 
an increasing preference for UAVs as the platform of choice. Here, the latest works on this 
specific subject are compiled to present the current progress (Table 3). Only publications 
dated from 2018 are included in the compilation.

RGB sensors dominate the research realm regarding weed mapping using UAVs. 
Although a multispectral sensor is more stable and relatively unaffected by the surrounding 
conditions, it is more expensive than RGB. The RGB sensor's performance can be improved 
by modifying the camera. The near-infrared filter can be replaced with a red filter to make 
it more sensitive to the near-infrared spectrum (Maes & Steppe, 2019). Weed detection 
on the field can be achieved by employing two approaches. The first is detection via row 
crops, and the second is through spectral discrimination. In the first approach, the weed 
that flourishes between the row crops can be detected and identified through advanced 
algorithms analysis, most notably OBIA methodology that identifies spatially and spectrally 
similar objects through adjacent pixel grouping. Modified RGB cameras have been utilised 
for inter-row weed detection with high overall accuracy (Maes & Steppe, 2019). 
However, this approach is less effective in detecting weeds growing within the crop rows 
and for high-density crop cultivation such as wheat.

In the spectral discrimination approach, the weed is distinguished from the crop 
through disparity in the spectral signal (Maes & Steppe, 2019). Differential spectral-based 
discrimination allows for mapping multiple weeds (Eide et al., 2021). Multispectral and 

Data 
input

Data pre-
processing

Model 
building & 
algorithm

Generalization
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hyperspectral sensors work on this principle. Modified RGB cameras exhibited the same 
property; however, simultaneous detection of multiple weeds has yielded a low accuracy 
due to the limited number of spectral bands available. Several studies were done with 
multispectral, including on rice, where discrimination of barnyard and common purslane 
weeds was achieved with 94% accuracy (Stroppiana et al., 2018). However, only works on 
maize were reported for the hyperspectral sensor. One of the stumbling blocks hampering 
the progress of hyperspectral imagery-related research is the substantial cost of procuring 
the sensors. One unit of hyperspectral sensor would cost USD 175,000, compared to a 
multispectral sensor that costs just around USD 6,000. Moreover, accurate quantification 
of spectral indices of crops and weeds can be obtained through the cheaper multispectral 
sensor (Askari et al., 2019). An inherent limitation associated with the hyperspectral image 
is that it captures images at a low spatial and temporal resolution. This phenomenon occurs 
because the hyperspectral sensor captures images in a very narrow wavelength band, 
consequently limiting the number of photons able to imp the sensor per unit of time.

Furthermore, the instability of the sensor during the flight due to the vibrating nature 
of the UAV has further worsened the problem (Esposito et al., 2021). Regardless of the 
limitation, there has been a study to distinguish rice, weedy rice and barnyard grass based 
on spectral recognition using hyperspectral line-scanning images (Zhang et al., 2019). 
As a result, six wavelengths (415 nm, 561 nm, 687 nm, 705 nm, 735 nm, and 1007 nm) 
have been identified as the most important spectral features that enabled weedy rice and 
barnyard grass discrimination with 100% accuracy.

Table 3
Recent works on weed mapping with imaging remote sensing on a UAV platform

Type of 
sensor

Crops Vegetation / 
spectral indices

Flying 
altitude 

(m)

Scopes and main findings References

RGB Rice

Not applicable 0.8 – 1.2 Weed (Sagittaria trifolia L.) 
identification. Weed

mapping through the FCN 
method. Accuracy of 92.7%

Ma et al. (2019)

ExG, ExR, GRVI, 
CIVE

20 Spatial weed distribution. 
Accuracy of 91.5%

Kawamura et al. 
(2021)

Not applicable 6 Weed mapping through FCN. 
Accuracy of 88.3%

Huang et al. 
(2018b)

Not applicable 10 Weed mapping comparison 
between OBIA and FCN 

methods. FCN performs better 
in terms of accuracy
(83.3% vs 72.2%)

Huang et al. 
(2020)

Not applicable 6 Weed (L. chinensis and C. iria) 
mapping via FCN. Accuracy 

of 94%

Huang, Lan et al. 
(2018)
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Table 3 (Continue)
Type of 
sensor

Crops Vegetation / 
spectral indices

Flying 
altitude (m)

Scopes and main findings References

RGB

Not applicable 6 Real-time image processing 
onboard a UAV using the   
FCN method. Accuracy of 

80.9%

Deng et al. 
(2020)

Not applicable 10 Weed (L. chinensis and C. 
iria) mapping via FCN. 

Accuracy of 86%

Huang et al. 
(2018a)

Oat VARI, GLI, 
NGRDI, BI, 

CI, RI

10 Weed mapping. Accuracy of 
87.1 – 89%

Gašparović et al. 
(2020)

Wheat

ExG, ExR, 
ExGR

30 Weed mapping through 
the OBIA method. Overall 

accuracy of 83%

Mateen (2019)

Not applicable 1–6 Individual classification 
of 4 types of weeds: 

Matricaria chamomilla L., 
Papaver rhoeas L., Veronica 

hederifolia L., Viola 
arvensis Murray., Arvensis 
using the DCNN method. 
Overall accuracy of 94%.

de Camargo et al. 
(2021)

Not applicable 20 Weed against soybean 
mapping using the CNN 

method.
Accuracy of 0.66

Sivakumar et al. 
(2020)

Soybean

Not applicable 4 The existing imagery dataset 
was analysed using two

established CNN methods 
and three custom CNNs. 

Custom 5-layer CNN has the 
highest accuracy at 97.7%, 
with the lowest latency and 

memory usage.

Razfar et al. 
(2022)

Not applicable 4 Classification of soybean, 
grass and broadleaf weed.
Overall accuracy of 99.4%

Haq (2021)

Marigold ExG, ExR, 
ExGR

20 Weed mapping and 
corresponding density on 
field infested with green 

bristlegrass, milkweed and 
sedge. The accuracy of weed 

mapping was 93.5%. The 
accuracy for weed density 

was 0.94.

Zou et al. (2021)
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Table 3 (Continue)
Type of 
sensor

Crops Vegetation / 
spectral indices

Flying 
altitude 

(m)

Scopes and main findings References

RGB

Bean  
spinach

ExG 20 Weed mapping using a similar 
CNN method on two crops on 

different fields. Overall accuracy 
of 0.95

Bah et al. 
(2018)

Sunflower 
& cotton

Not applicable 30 & 60 Early season weed mapping 
against two types of

crops of different fields using a 
similar OBIA method. Accuracy 

of 81% (sunflowers) and 84% 
(cotton).

de Castro et 
al. (2018)

Beet, 
parsley & 
spinach

Not applicable 20 & 30 Weed discrimination using the 
CNN method. Overall accuracy 

of 99%

Reedha et al. 
(2022)

Pea & 
strawberry

Not applicable 2 Weed mapping using GAN 
method. Accuracy of

90% and comparable to the CNN 
method

Khan et al. 
(2021)

Grassland

Not applicable 10 Mapping of Rumex obtusifolius 
L. from production

grasslands via CNN method. 
90% accuracy

Valente et al. 
(2019)

Not applicable 10 & 20 Mapping of R. obtusifolius by 
combining OBIA

and CNN method. Accuracy of 
92.1%

Lam et al. 
(2021)

Not applicable 25 Weed mapping through the CNN 
method. Overall accuracy of 

87%

Pei et al. 
(2022)

Maise ExG 20 Weep mapping via OBIA with an 
accuracy of 0.945

Gao et al. 
(2018)

Not applicable Variable 
height

Weed mapping with augmented 
data via CNN method. Improved 
accuracy to 95.7% from 92.9%

Bullock et al. 
(2019)

Tobacco Not applicable 4 Weed mapping through 2-stage 
segmentation CNN. Improved 

accuracy from 0.76 (single stage 
segmentation) to 0.91 (two-

stage)

Moazzam et 
al. (2023)

Sesame

Not applicable 5 Mapping of weed using the 
newly established CNN method. 

Accuracy of 96.7%

Moazzam et 
al. (2022)

Not applicable 120-240 Weed mapping through Mask 
R-CNN with augmented data. 

Accuracy of 0.803

Mini et al. 
(2020)
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Table 3 (Continue)

Type of 
sensor

Crops Vegetation / 
spectral indices

Flying 
altitude 

(m)

Scopes and main findings References

ExG 125-200 Comparison of weed 
mapping accuracy between 
machine learning and CNN 
method. CNN performed 

slightly better

Júnior et al. 
(2020)

Wheat, 
maize & 
peanut

Not applicable 2 Mapping of three weeds: 
Chenopodium album L., 

Humulus scandens (Lour.) 
Merr., Xanthium sibirium 
Patrin ex Widder on three 
separate farmlands. Weed 

mapping was generated using 
the CNN method. Overall 

accuracy of 99.39% (RGB) 
and 99.53% (MS). Weed 

density accuracy was near 
the Ground truth values

Wang et al. 
(2022)

RGB & 
multispectral

Maise & 
sugar beet

NDVI 
(multispectral) 

& ExGR 
(RGB)

15 & 30 Mapping of creeping 
thistle and curled dock by 
combining data set from 
RGB and multispectral. 

Accuracy of 96% (maise) 
and 80% (sugar beetz)

Mink et al. 
(2018)

Winter 
wheat

Not applicable 45 Large scale mapping of 
blackgrass from 31 fields 
(205 hectares) using the 

CNN method with an 
accuracy of above 0.9

Fraccaro et 
al. (2022)

RGB & 
multispectral

Maise & 
sugar beet

NDVI 
(multispectral) 

& ExGR 
(RGB)

15 & 30 Mapping of creeping 
thistle and curled dock by 
combining data set from 
RGB and multispectral. 

Accuracy of 96% (maise) 
and 80% (sugar beetz)

Mink et al. 
(2018)

Winter 
wheat

Not applicable 45 Large scale mapping of 
blackgrass from 31 fields 
(205 hectares) using the 

CNN method with an 
accuracy of above 0.9

Fraccaro et 
al. (2022)

Rice

SAVI, NDVI, 
RGRI, CVI, 

NDRE

70 Distinguishing Echinochloa 
spp. and Portulaca oleracea 
L.). Overall accuracy of 94%

Stroppiana 
et al. (2018)

NDVI 60 Weed mapping on cultivated 
rice field

Rosle et al. 
(2022)
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Table 3 (Continue)

Type of 
sensor

Crops Vegetation 
/ spectral 
indices

Flying 
altitude 

(m)

Scopes and main findings References

Multispectral

Maise NDVI 50 Weed mapping of C. album and 
Cirsium arvense (L.) Scop. Accuracy 

of 80%

Louargant et 
al. (2017)

Wheat 18 Vis were 
adopted, 

with the best 
performing 
being TGI

20 Mapping of Alopecurus myosuroides 
Huds. infecting wheat fields. Overall 

accuracy of 93%

Su et al. 
(2022)

Soybean NDVI 10 Detecting and mapping glyphosate 
resistance weeds of kochia, ragweed 

and amaranth after glyphosate 
application. The highest mapping 

accuracy scores were attained after 
8 days of application. Respective 
accuracy score: kochia (0.752), 
ragweed (0.872), and amaranth 

(0.935)

Eide et al. 
(2021)

Sorghum Not 
applicable

10–38 Spectral data of sorghum and 6 
types of weeds were collected with a 
handheld hyperspectral device. Data
from identified bands were loaded 

into a multispectral sensor on a UAV 
for field surveying. Successful

identification of sorghum, amaranth, 
liver seed grass, mallow weed, and 

nutgrass.

Che’ya et al. 
(2021)

Green 
onion

Not 
applicable

4–5 Weed detection using CNN based 
on images curated from a video 
recording. Accuracy of 93.81%

Parico and 
Ahamed 
(2020)

Sugar 
beet

NDVI 10 Production of high-resolution weed 
mapping on large area coverage using 

DNN. Accuracy of 0.782

Sa et al. 
(2018)

Hyperspectral Maise

CNORM, 
GRDB, 
OSAVI

30 Maise field infested with 5 weeds. 
Analysis based on chlorophyll 
and carotenoid leaf behaviour. 

Introduction of two new spectral 
indices. Successful mapping of 

maise, Amaranthus and Cyperus-
based on comparison with ground-
based dry biomass and LAI index

Pignatti et al. 
(2019)

CNORM, 
GRDB

30 Broad discrimination between weed 
and crop and dataset analysis using 

3 methods. Amaranthus and Cyperus 
can be separated from maise using 

the CNORM/GRDB index and CNN 
methods. The quality of spectral 

images was compromised due to the 
instability of the UAV during the 

image-taking process

Casa et al. 
(2019)
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SELECTIVE HERBICIDE SPRAYING USING UAV
The final strategy for a successful SSWM with herbicide is the ability to selectively 
apply a specific herbicide on weed patches based on the information relayed by the weed 
mapping. UAV has been widely employed for this purpose. Generally, there are three 
types of UAVs: fixed wing, single rotor, and multiple rotors (Hanif et al., 2022). As for the 
multiple rotors UAV, the naming is based on the number of rotors: quadcopter (4 rotors), 
hexacopter (6 rotors) and octocopter (8 rotors). Multirotor is the most employed UAV 
in agricultural practices, with the quadcopter being the most preferred due to its greater 
stability (Rahman et al., 2021). UAVs allow selective herbicide spraying and expedite the 
application process, vital in large-scale cultivation where timely herbicide application is 
vital. The simultaneous deployment of multiple drones has also been explored to fulfil 
the timely herbicide spraying requirement (Chen et al., 2022). UAVs used in SSWM are 
equipped with numerous technological features, namely Global Positioning System (GPS), 
automatic path planning, high accuracy positioning, obstacle avoidance ability, real-time 
kinematics, automatic spraying system, and pulse width modulation system.

However, using UAV for herbicide spraying on the field is associated with drift and 
downwash airflow of the herbicide droplets associated with the vortex pulse created by the 
rotor. Consequently, uniform droplet deposition, the key to successful herbicide application, 
is not achieved (Hao et al., 2022). Studies have been done to minimise or eliminate the 
drift and downwash effects by studying the spraying parameters, such as the droplet size 
and the spraying rate (Chen et al., 2020). Apart from the spraying parameters, the droplet 
deposition is also influenced by several other factors: the UAV flight condition (altitude 
and speed), environmental factors (humidity, temperature, and wind speed), and the liquid 
properties (type and concentration) (Hao et al., 2022).

CONCLUSION AND FUTURE PROSPECT
Weed infestation will continue to become one of the biggest hurdles in achieving maximum 
crop production. SSWM is a formidable approach to solving the weed predicament. The 
induction of remote sensing and UAV as part of the SSWM strategy has offered a promising 
solution for the ongoing weed infestation. Implementing this technology in Malaysia's rice 
field can increase rice production and reduce its dependency on rice imports. Nevertheless, 
research related to this technology in Malaysia is either non-existent or insufficient to 
provide insight into its real-time application on local climate and conditions. Therefore, 
research is imperative to implementing this technology in Malaysia's paddy field.
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